Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Molecular Therapy - Methods & Clinical Development ; 2023.
Article in English | ScienceDirect | ID: covidwho-20238249

ABSTRACT

Recombinant adeno-associated viruses (rAAVs) are a preferred vector system in clinical gene transfer. A fundamental challenge to formulate and deliver rAAVs as stable and efficacious vaccines is to elucidate interrelationships between the vector's physicochemical properties and biological potency. To this end, we evaluated an rAAV-based COVID-19 vaccine candidate which encodes the Spike antigen (AC3) and is produced by a commercially viable process. First, state-of-the-art analytical techniques were employed to determine key structural attributes of AC3 including primary and higher-order structures, particle size, empty/full capsid ratios, aggregates and multi-step thermal degradation pathway analysis. Next, several quantitative potency measures for AC3 were implemented and data were correlated with the physicochemical analyses on thermal-stressed and control samples. Results demonstrate links between decreasing AC3 physical stability profiles, in vitro transduction efficiency in a cell-based assay, and importantly, in vivo immunogenicity in a mouse model. These findings are discussed in the general context of future development of rAAV-based vaccines candidates as well as specifically for the rAAV vaccine application under study.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.10.532114

ABSTRACT

Recombinant adeno-associated viruses (rAAVs) are a preferred vector system in clinical gene transfer. A fundamental challenge to formulate and deliver rAAVs as stable and efficacious vaccines is to elucidate interrelationships between the vectors physicochemical properties and biological potency. To this end, we evaluated an rAAV-based COVID-19 vaccine candidate which encodes the Spike antigen (AC3) and is produced by an industrially-compatible process. First, state-of-the-art analytical techniques were employed to determine key structural attributes of AC3 including primary and higher-order structures, particle size, empty/full capsid ratios, aggregates and multi-step thermal degradation pathway analysis. Next, several quantitative potency measures for AC3 were implemented and data were correlated with the physicochemical analyses on thermal-stressed and control samples. Results demonstrate links between decreasing AC3 physical stability profiles, in vitro transduction efficiency in a cell-based assay, and importantly, in vivo immunogenicity in a mouse model. These findings are discussed in the general context of future development of rAAV-based vaccines candidates as well as specifically for the rAAV vaccine application under study.


Subject(s)
COVID-19
3.
Infectious Microbes & Diseases ; 4(4):175-177, 2022.
Article in English | Web of Science | ID: covidwho-2190912

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) infection in humans has a high mortality of >30%. Dromedaries are the reservoir of MERS-CoV and the main source of human infections. However, MERS-CoV infections in dromedaries are usually subclinical. Rapid diagnosis of MERS-CoV infection in these animals is important in preventing camel-to-human transmission of the virus. The possible cross-reactivity of a previously reported rapid nucleocapsid protein-based antigen detection assay for MERS-CoV was examined with different CoVs, including Tylonycteris bat CoV HKU4, dromedary camel CoV UAE-HKU23, human CoV-229E, human CoV-OC43, severe acute respiratory syndrome CoV-2 and rabbit CoV HKU14, where none of them showed false-positive results. The assay was further validated using quantitative real-time reverse transcription-polymerase chain reaction-confirmed MERS-CoV-positive and MERS-CoV-negative dromedary nasal samples collected in Dubai, the United Arab Emirates, which showed that the rapid antigen detection assay has a specificity of 100% and sensitivity of 91.7%.

4.
Innov Aging ; 6(Suppl 1):748-9, 2022.
Article in English | PubMed Central | ID: covidwho-2189038

ABSTRACT

While gerotranscendence theories postulate that older adults tend to orient themselves toward solitude, activity theories highlight the importance of continuing social and meaningful engagement for well-being across lifespan. The distinction between loneliness and social isolation is particularly observable in older adults of advanced age who are often facing accelerated decline in physical and functional health, therefore restricting their opportunities to interact with others. This has been particularly disturbing during the previous two years under COVID. This study utilized data from the 2nd Hong Kong Centenarian Study which interviewed 120 family caregivers of older adults aged 95 or above in 2021–2022 when the city experienced almost an entire year of the outbreak. Using family or friend proxy information as well as caregiver ratings of whether older adults expressed feelings of social isolation and loneliness, we found that 10.7% of older adults reported high levels of loneliness and isolation;26.7% feeling low in both;11.5% were isolated but not lonely, and 38.2% were lonely but not isolated. Loneliness ratings were more strongly associated with psychological well-being (Patient Health Questionnaire-4), autonomy, happiness, perceived usefulness, worries, and death anxiety than did isolation, with the latter negatively correlated with optimism. Participants rated in the low isolation/loneliness group were least (death) anxious than the other three groups. Our findings underscore the divergence of isolation and loneliness for adults of advanced age and call for psychological support for oldest-old adults who continue to face social isolation, especially when society gradually recovers from COVID.

5.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1860155

ABSTRACT

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Dependovirus/genetics , Humans , Macaca , Mice , Pandemics/prevention & control , SARS-CoV-2/genetics
6.
Molecular therapy : the journal of the American Society of Gene Therapy ; 2022.
Article in English | EuropePMC | ID: covidwho-1837975

ABSTRACT

The COVID19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an AAV-based COVID19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and nonhuman primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide potent tool in the ongoing fight against SARS-CoV-2. Graphical This manuscript characterizes and optimizes an AAV-based vaccine platform for several COVID-19 development candidates: durability of humoral response at high level for over 20 months, the ability to reduce the dose and protect from challenge in NHP and the versatility and robustness of the platform across different variant of concern antigens.

7.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1792416

ABSTRACT

The SARS-CoV-2 pandemic has had a disastrous impact on global health. Although some vaccine candidates have been effective in combating SARS-CoV-2, logistical, economical, and sociological aspects still limit vaccine access globally. Recently, we reported on two room-temperature stable AAV-based COVID-19 vaccines that induced potent and protective immunogenicity following a single injection in murine and primate models. Obesity and old age are associated with increased mortality in COVID-19, as well as reduced immunogenicity and efficacy of vaccines. Here, we investigated the effectiveness of the AAVCOVID vaccine candidates in murine models of obesity and aging. Results demonstrate that obesity did not significantly alter the immunogenicity of either vaccine candidate. In aged mice, vaccine immunogenicity was impaired. These results suggest that AAV-based vaccines may have limitations in older populations and may be equally applicable in obese and non-obese populations.


Subject(s)
COVID-19 , Vaccines , Aged , Aging , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Disease Models, Animal , Humans , Mice , Obesity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
iScience ; 25(4): 104101, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1739822

ABSTRACT

Non-human primates (NHPs) are particularly relevant as preclinical models for SARS-CoV-2 infection and nuclear imaging may represent a valuable tool for monitoring infection in this species. We investigated the benefit of computed X-ray tomography (CT) and [18F]-FDG positron emission tomography (PET) to monitor the early phase of the disease in a large cohort (n = 76) of SARS-CoV-2 infected macaques. Following infection, animals showed mild COVID-19 symptoms including typical lung lesions. CT scores at the acute phase reflect the heterogeneity of lung burden following infection. Moreover, [18F]-FDG PET revealed that FDG uptake was significantly higher in the lungs, nasal cavities, lung-draining lymph nodes, and spleen of NHPs by 5 days postinfection compared to pre-infection levels, indicating early local inflammation. The comparison of CT and PET data from previous COVID-19 treatments or vaccines we tested in NHP, to this large cohort of untreated animals demonstrated the value of in vivo imaging in preclinical trials.

10.
Viruses ; 11(5):07, 2019.
Article in English | MEDLINE | ID: covidwho-1017186

ABSTRACT

While bats are increasingly recognized as a source of coronavirus epidemics, the diversity and emergence potential of bat coronaviruses remains to be fully understood. Among 1779 bat samples collected in China, diverse coronaviruses were detected in 32 samples from five different bat species by RT-PCR. Two novel alphacoronaviruses, Rhinolophus sinicus bat coronavirus HKU32 (Rs-BatCoV HKU32) and Tylonycteris robustula bat coronavirus HKU33 (Tr-BatCoV HKU33), were discovered from Chinese horseshoe bats in Hong Kong and greater bamboo bats in Guizhou Province, respectively. Genome analyses showed that Rs-BatCoV HKU32 is closely related to BatCoV HKU10 and related viruses from diverse bat families, whereas Tr-BatCoV HKU33 is closely related to BtNv-AlphaCoV and similar viruses exclusively from bats of Vespertilionidae family. The close relatedness of Rs-BatCoV HKU32 to BatCoV HKU10 which was also detected in Pomona roundleaf bats from the same country park suggests that these viruses may have the tendency of infecting genetically distant bat populations of close geographical proximity with subsequent genetic divergence. Moreover, the presence of SARSr-CoV ORF7a-like protein in Rs-BatCoV HKU32 suggests a common evolutionary origin of this accessory protein with SARS-CoV, also from Chinese horseshoe bats, an apparent reservoir for coronavirus epidemics. The emergence potential of Rs-BatCoV HKU32 should be explored.

11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.05.422952

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 70 million people worldwide and resulted in over 1.5 million deaths. A broad deployment of effective immunization campaigns to achieve population immunity at global scale will depend on the biological and logistical attributes of the vaccine. Here, two adeno-associated viral (AAV)-based vaccine candidates demonstrate potent immunogenicity in mouse and nonhuman primates following a single injection. Peak neutralizing antibody titers remain sustained at 5 months and are complemented by functional memory T-cells responses. The AAVrh32.33 capsid of the AAVCOVID vaccine is an engineered AAV to which no relevant pre-existing immunity exists in humans. Moreover, the vaccine is stable at room temperature for at least one month and is produced at high yields using established commercial manufacturing processes in the gene therapy industry. Thus, this methodology holds as a very promising single dose, thermostable vaccine platform well-suited to address emerging pathogens on a global scale.


Subject(s)
COVID-19
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.05.424956

ABSTRACT

The ability of S-glycoprotein (S-protein) in SARS-Cov-2 to bind to the host cell receptor protein (angiotensinconverting enzyme 2 (ACE2)) leading to its entry in cellular system determines its contagious index and global spread. Three available drugs (Riboflavin, Amodiaquin dihydrochloride dihydrate (ADD) and Remidesivir) were investigated to understand the kinetics of S-protein and its entry inside a cellular environment. Optical microscopy and fluorescence-based assays on 293T cells (transfected with ACE2 plasmid) were used as the preamble for assessing the behaviour of S-protein in the presence of these drugs for the first 12 hours post S-protein - ACE2 binding. Preliminary results suggest relatively long retention of S-protein on the cell membrane in the presence of ADD drug. Evident from the %-overlap and colocalization of S-protein with endosome studies, a large fraction of S-protein entering the cell escape endosomal degradation process, suggesting S-protein takes non-endocytic mediated entry in the presence of ADD, whereas in the presence of Riboflavin, S-protein carry out normal endocytic pathway, comparable to control (no drug) group. Therefore, present study indicates ADD potentially affects S-protein's entry mechanism (endocytic pathway) in addition to its reported target action mechanism. Hence, ADD substantially interfere with S-protein cellular entrance mechanism. However, further detailed studies at molecular scale will clarify our understanding of exact intermediate molecular processes. The present study (based on limited data) reveal ADD could be potential candidate to manage Covid-19 functions through yet unknown molecular mechanism.


Subject(s)
COVID-19 , Chondrocalcinosis
13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.04.425316

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been an ongoing global pandemic for over one year. Recently, an emergent SARS-CoV-2 variant (B.1.1.7) with an unusually large number of mutations had become highly contagious and wide-spreading in United Kingdom. From genome analysis, the N501Y mutation within the receptor binding domain (RBD) of the SARS-CoV-2's spike protein might have enhanced the viral protein's binding with the human angiotensin converting enzyme 2 (hACE2). The latter is the prelude for the virus' entry into host cells. So far, the molecular mechanism of this enhanced binding is still elusive, which prevents us from assessing its effects on existing therapeutic antibodies. Using all atom molecular dynamics simulations, we demonstrated that Y501 in mutated RBD can be well coordinated by Y41 and K353 in hACE2 through hydrophobic interactions, increasing the overall binding affinity between RBD and hACE2 by about 0.81 kcal/mol. We further explored how the N501Y mutation might affect the binding between a neutralizing antibody (CB6) and RBD. We expect that our work can help researchers design proper measures responding to this urgent virus mutation, such as adding a modified/new neutralizing antibody specifically targeting at this variant in the therapeutic antibody cocktail.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL